Use of gold nanoparticles in MAGIC-f gels to 18 MeV photon enhancement

Authors

  • Azizollah Rahimi Department of Radiology, Faculty of Paramedical, Hamadan University of Medical Sciences, Hamadan, Iran|Department of Medical Physics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
  • Hossein Khosravi Department of Radiology, Faculty of Paramedical, Hamadan University of Medical Sciences, Hamadan, Iran
  • Karim Ghazikhanlousani Department of Radiology, Faculty of Paramedical, Hamadan University of Medical Sciences, Hamadan, Iran
Abstract:

Objective(s): Normoxic MAGIC-f polymer gels are established dosimeters used for three dimensional dose quantifications in radiotherapy. Nanoparticles with high atomic number such as gold are novel radiosensitizers used to enhance doses delivered to tumors. The aim of this study was to investigate the effect of gold nanoparticles (GNPs) in enhancing percentage depth doses (PDDs) within the MAGIC-f gel exposed to linear accelerator (linac) high energy photon beams. Materials and Methods: The MAGIC-f gel was fabricated based on its standard composition with some modifications. The PDDs in tubes containing the gel were calculated by using a common Monte Carlo code (Geant4) followed by experimental verifications. Then, GNPs with an average diameter of 15 nm and a concentration of 0.1 mM were embedded in the gel, poured into falcon tubes and irradiated with 18 MeV beams of an Elekta linac. Finally, similar experimental and Monte Carlo (MC) calculations were made to determine the effect of using GNPs on some dosimetric parameters of interest.Results: The results of experimental measurements and simulated MC calculations showed a dose enhancement factor (DEF) of 1.12±0.08 and 1.13±0.04, respectively due to the use of GNPs when exposed to 18 MeV linac energies.Conclusion: The results indicated that the fabricated MAGIC-f gel could be recommended as a suitable tool for three dimensional dosimetric investigations at high energy radiotherapy procedures wherein GNPs are used.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Investigation of the dose enhancement effect due to gold nanoparticles at 18 MV radiotherapy using MAGIC-f and Monte Carlo methods Thoraco-Lumbar spinal cord fMRI in 3T Magnetic field

Introduction: Normoxic MAGIC-f polymer gels are established dosimeters used for three dimensional dos uantifications in radiotherapy. The high atomic number nanoparticles such as gold are nov adiosensitizers used to enhance doses delivered to tumors. The aim of this study was t vestigate the effect of gold nanoparticles (GNPs) in enhancing percentage depth doses (PDD ithin the...

full text

Enhancement of radio-sensitivity of colorectal cancer cells by gold nanoparticles at 18 MV energy

Objective(s): Taking advantage of high atomic number of gold nanoparticles (GNPs) in radiation dose absorbing, many in vitro and in vivo studies have been carried out on using them as radio-sensitizer. In spite of noticeable dose enhancement by GNPs at keV energies, using this energy range for radiotherapy of deep-seated tumors is outdated. The aim of the present work was to examine the effect ...

full text

Dosimetric Evaluation of Linac Photon Small Fields using MAGIC Polymer Gels

Introduction: In radiotherapy, methods of treatment planning are becoming increasingly more complicated. This requires verification of the doses delivered to increasingly smaller and more precise regions. Radiotherapy techniques are continuously employing smaller and smaller field sizes to deliver tighter radiation doses with higher therapeutic ratios, generating interest among researchers to p...

full text

Radiotherapy enhancement with gold nanoparticles.

Gold is an excellent absorber of X-rays. If tumours could be loaded with gold, this would lead to a higher dose to the cancerous tissue compared with the dose received by normal tissue during a radiotherapy treatment. Calculations indicate that this dose enhancement can be significant, even 200% or greater. In this paper, the physical and biological parameters affecting this enhancement are dis...

full text

Synthesis and Evaluation of Gold Nanoparticles/Nanorods to Use in Plasmonic Photothermal Therapy

Introduction: Photothermal therapy is a method of cancer treatment that plasmonic nanoparticles are used to convert infrared light into local heat. Due to the plasmonic properties of gold nanoparticles, this compound was used as a contrast agent. The aim of this study was to synthesize gold nanoparticles with different conjugations for photothermal therapy. Methods: This research was an experi...

full text

Gold Nanoparticles for Radiation Enhancement in Vivo.

Enhancing the effect of radiation on tumors would be a significant improvement in radiation therapy. With radiation enhancement, less radiation could be used to achieve the same goals, lessening damage to healthy tissue and lessening side effects. Gold nanoparticles are a promising method for achieving this enhancement, particularly when the gold nanoparticles are targeted to cancer. This liter...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 1

pages  67- 73

publication date 2019-01-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023